Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Year range
1.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750496

ABSTRACT

The Mac1 domain of the multifunctional SARS-CoV-2 non-structural protein 3 (nsp3) is a potential COVID-19 drug target because it is suspected to enhance the ability of the virus to evade the human immune system. The SARS-CoV-2 Mac1 domain binds ADP-ribose and proteins harboring this important post-translational modification. Small molecules that bind the Mac1 domain in place of ADP-ribose might therefore be useful as molecular probes or scaffolds for antiviral drug discovery. Two high throughput screens were used here to identify such ligands in small libraries of drugs and drug-like compounds. The first screen used differential scanning fluorimetry (DSF, aka the thermal shift or ThermoFluor assay) to examine the melting temperature of SARS-CoV-2 Mac1 domain in the presence of various compounds. In the second screen, various high-resolution SARS-CoV-2 Mac1 structures were used with Autodock VINA to identify potential ligands. Numerous hit compounds were either steroids (estradiol valerate & flunisolide), beta-lactams (cefaclor & cefatrizine), or benzimidazoles (telmisartan, rabeprazole, omeprazole, & esomeprazole). Isothermal titration calorimetry was used to confirm that rabeprazole, omeprazole, and compounds in other chemical classes, such as irinotecan, nifedipine, trifluoperazine, bind SARS-CoV-2 Mac1 with an affinity similar to ADP-ribose.

2.
SLAS Discov ; 25(10): 1162-1170, 2020 12.
Article in English | MEDLINE | ID: covidwho-800006

ABSTRACT

Small molecules that bind the SARS-CoV-2 nonstructural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to the ability of coronaviruses to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, ß-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using AutoDock Vina. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , High-Throughput Screening Assays/methods , SARS-CoV-2/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Coronavirus Papain-Like Proteases/genetics , Cyclic AMP/chemistry , Cyclic AMP/metabolism , Ligands , Models, Molecular , Molecular Docking Simulation , Protein Conformation , Protein Domains , SARS-CoV-2/drug effects
3.
bioRxiv ; 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-665871

ABSTRACT

Small molecules that bind the SARS-CoV-2 non-structural protein 3 Mac1 domain in place of ADP-ribose could be useful as molecular probes or scaffolds for COVID-19 antiviral drug discovery because Mac1 has been linked to coronavirus' ability to evade cellular detection. A high-throughput assay based on differential scanning fluorimetry (DSF) was therefore optimized and used to identify possible Mac1 ligands in small libraries of drugs and drug-like compounds. Numerous promising compounds included nucleotides, steroids, beta-lactams, and benzimidazoles. The main drawback to this approach was that a high percentage of compounds in some libraries were found to influence the observed Mac1 melting temperature. To prioritize DSF screening hits, the shapes of the observed melting curves and initial assay fluorescence were examined, and the results were compared with virtual screens performed using Autodock VINA. The molecular basis for alternate ligand binding was also examined by determining a structure of one of the hits, cyclic adenosine monophosphate, with atomic resolution.

SELECTION OF CITATIONS
SEARCH DETAIL